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Traditional techniques for performance analysis provide a means for extracting and analyzing raw 
performance information from applications. Users then compare this raw data to their performance 
expectations for application constructs. This comparison can be tedious for the scale of today's architectures 
and software systems. To address this situation, we present a methodology and prototype that allows users to 
assert performance expectations explicitly in their source code using performance assertions. As the 
application executes, each performance assertion in the application collects data implicitly to verify the 
assertion. By allowing the user to specify a performance expectation with individual code segments, the 
runtime system can jettison raw data for measurements that pass their expectation, while reacting to failures 
with a variety of responses. We present several compelling uses of performance assertions with our 
operational prototype, including raising a performance exception, validating a performance model, and 
adapting an algorithm empirically at runtime. 

1 Introduction 
Traditional techniques for performance analysis provide a variety of mechanisms for 

instrumentation, data collection, and analysis. These techniques, such as tracing 
communication activity, sampling hardware counters, and profiling subroutines, allow 
users to capture raw data about the performance behaviors of their code. Users can then 
reason about and compare this raw data to their performance expectations for individual 
application constructs. In most cases, these conventional techniques do not explicitly 
provide the capability for a user to plant the expectation directly in his or her application. 
This shortcoming forces users to reason from the perspective of absolute performance for 
every performance experiment and every application construct. For the scale and 
complexity of today's architectures and software systems, the volume of raw output can 
easily overwhelm any user. This comparison can be tedious, difficult, and error-prone. 

To address this issue, we present a new methodology and prototype system, called 
performance assertions (PA), that provides this capability so that users can assert 
performance properties for code constructs explicitly within their applications. The PA 
runtime implicitly gathers performance data based on the user’s assertion and verifies this 
expectation at runtime. By allowing the user to specify a performance expectation for 
individual code segments, the runtime system can jettison raw data for successful 
assertions while reacting to failures with a variety of responses. Very simply, this 
approach attempts to automate the testing of performance properties of evolving complex 
software systems and software performance models. 

To this end, we have implemented an operational prototype for performance 
assertions. Our experience with this prototype on several applications and with a variety 
of response mechanisms indicates that performance assertions can improve the traditional 
process of performance analysis. By providing a higher level of abstraction in the 
performance analysis process, we permit the user to reason in performance models rather 
than in the low-level details of instrumentation and data management. That said, we are 
continuing to improve our prototype based on several observations from these 
experiments. Key among these observations is the fact that users will need analytical 
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support in determining the bounds for performance assertion expressions. Also, our initial 
prototype considers only serial performance metrics focused on one processor. We plan 
to extend this set of metrics in the prototype to include communication, threading, I/O 
activity, and a combination of these metrics. 

1.1 Motivating Example 
Traditionally, performance measurement and monitoring has been a multipart 

process. First, users instrument their applications to capture performance data of interest, 
which can present a challenge per se because a user must know what data to collect and 
when to collect it. Users must balance these questions among the competing goals of low 
overhead, reasonable data volume, and sufficient levels of detail. Next, the users generate 
performance data from one or more experiments. Third, users analyze this raw data with 
visualizations or automated tools in the hope of determining if the performance of 
individual constructs satisfies their expectations. Lastly, with this information in hand, 
users attempt to optimize constructs that failed their expectations and begin the process 
anew.  
PAPI_start(CYCLES,INSTRUCTIONS); 
for (j = 1; j <= lastrow - firstrow + 1; j++) 
{ 
  sum = 0.0; 
  for (k = rowstr[j]; k < rowstr[j + 1];  
       k++) 
    { 
      sum = sum + a[k] * p[colidx[k]]; 
    } 
  w[j] = sum; 
} 
PAPI_stop(vals); 
/* Analyze or store PAPI values */ 

pa_start (&pa, '$ipc_peak*0.5<$ipc'); 
for (j = 1; j <= lastrow - firstrow + 1; j++) 
{ 
  sum = 0.0; 
  for (k = rowstr[j]; k < rowstr[j + 1];  
       k++) 
    { 
      sum = sum + a[k] * p[colidx[k]]; 
    } 
  w[j] = sum; 
} 
pa_end(pa); 

Figure 1: Traditional instrumentation for a 
loop. 

Figure 2: Specifying a performance 
assertion for a loop. 

For example, Figure 1 shows a sparse matrix vector multiply (SMVM) loop. To 
analyze the performance of this loop for instructions per cycle (IPC), users have several 
options. In this example, we use the Performance Application Programming Interface 
(PAPI) library [4] to access the underlying hardware counters on the target system. This 
library returns raw hardware counter values for bracketed regions of code. With each set 
of values returned by the PAPI library, the application must either store this data for post-
mortem analysis or analyze it immediately at runtime. In this example, the 
instrumentation does not contain any notion of how the data is to be used, so the 
monitoring system must conservatively record all raw data. PAPI promotes portability for 
the actual instrumentation process, but it does not address data management and 
performance expectation issues.  

In contrast, Figure 2 shows the same loop when annotated with performance 
expectations using our performance assertions. By introducing this higher level of 
abstraction into the performance analysis process, we achieve several goals. In this 
example, the measurement and data collection mechanisms are no longer pertinent 
because the PA runtime selects the appropriate instrumentation based on the PA 
expression and, for example, some platforms use statistical techniques to estimate these 
hardware values, such as Compaq’s DCPI [1]. Second, the PAs can be disabled or 
removed easily. Third, as the PA is evaluated, the runtime system can purge raw data, 
keeping only statistics and counts. Fourth, a compiler that recognizes PAs could optimize 
the PA expression evaluation and minimize overhead due to instrumentation. 
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In summary, the overall goal of this implementation is to create a source code 
annotation system for applications that allows a user to specify a performance expectation 
for a given code segment. At runtime, the assertion will measure the necessary metrics, 
compare them to the expectation, and, if violated, take some action (e.g., alert the user, 
enable performance monitoring, adapt the current system). Performance assertions 
perform three critical tasks. First, they allow the user to define a portable performance 
expectation in the context of their application design while freeing them from focusing on 
instrumentation. Second, PAs limit the amount of data that users must encounter during 
the performance analysis process. By highlighting only those portions of the code that fail 
to meet the user-defined expectation, PAs can preempt data generation before it is thrust 
upon the user. Third, PAs compel users to express their expectations quantitatively with 
an expression that reflects their application design, while liberating them from specific 
instrumentation and portability concerns. 

2 Design of Performance Assertions 
The design of performance assertions has three distinct components: a performance 

assertion language, source code annotations, and a runtime system. As illustrated by 
Figure 3, at step , a user annotates source code with performance assertions using the 
PA language. Next, at step , the user executes the annotated source code, and during 
this execution the PA runtime system collects performance data with instrumentation and 
evaluates the performance expectations. Finally, at step , assertions generate a variety 
of responses. Assertions that pass can simply be ignored, while failures can trigger an 
array of responses. For example, in a, the final PA report for the application indicates 
that the assertion failed 13 of 700 invocations. 
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Figure 3: Performance Assertion Overview. 

The users define their expectations in our PA language with specific source code 
annotations as Figure 3 shows; this language provides access to various performance 
metrics as well as key features of the architecture and user parameters. That is, 
expressions can contain references to values such as $wtime (wall clock time), $nLoads 
(number of memory load instructions), $nFlops (number of floating point operations), 
$nL1LoadMisses (number of L1 data cache misses), $nCyclesReadStall (cycles stalled on 
read memory accesses), or $nInsts (number of instructions). The PA runtime invokes the 
proper instrumentation and data collection facilities for each expression. PAs can also 
reference values that represent architecture characteristics, such as $fp_peak_rate 
(theoretical floating point peak rate), and arbitrary application values can be 
parameterized into the expression using format specifications similar to scanf [8].  
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The runtime system captures the appropriate metrics and evaluates expressions as 
necessary, responding with the appropriate action when an assertion fails. The response 
can take a number of forms. For instance, it can increment a counter, make a callback to a 
user-defined subroutine, write the data to a log file, or drive feedback into the application 
or a separate runtime system. 

2.1 Performance Assertion Language 
Our PA language allows a user to specify an expression that contains a variety of 

tokens that represent empirically measured performance metrics, constants, variables, 
mathematical operations, a subset of intrinsic operations (e.g., log, exp), and format 
specifiers. Format specifiers allow the expressions to incorporate values from the 
application directly. 

Consider the following example expressions: 

 $nInsts / $nCycles > 0.8 (1) 

Expression (1) has five tokens. The left-hand side (LHS) of this expression specifies 
the ratio of number of instructions completed to the number of cycles. The relational 
operator tests whether the LHS is greater than the right-hand side (RHS), and in this case, 
the constant 0.8. When this expression is first evaluated by the PA runtime system, it 
determines that the underlying instrumentation must collect two performance metrics: 
number of instructions completed (nInsts) and number of cycles (nCycles). Subsequent 
invocations read these metrics from the instrumentation, instantiate the expression's 
variables, and evaluate the expression.  

 $nInsts / $nCycles > (0.4 * $ipc_peak) (2) 

Expression (2) is very similar to expression (1); however, the RHS has been replaced 
by another expression that contains an architecture-dependent constant: $ipc_peak. In 
order to provide portable, architecture-independent parameterized expressions in our PA 
language, we have included an array of predefined constants that demonstrate the 
performance of the underlying architecture. The value for $ipc_peak is substituted into 
the expression at runtime. These constants can be theoretical or empirically measured 
values, such as those generated with microbenchmarks [9, 10] or machine signatures 
[14]. These constants are loaded at initialization and they remain constant throughout the 
application execution.  

 $nInsts / $nCycles > (%g * $ipc_peak) , &x (3) 

Expression (3) is very similar to expression (2); however, the RHS has been 
parameterized to include values directly from the application with the format specifier %g 
and the variable address &x. This capability allows users to specialize expressions for 
specific parameters, such as the size of the input. 

Aside from expressiveness, our design of this performance assertion language has 
several goals, and we attempt to strike a practical balance among these requirements. 
First, our language must have a flexible, architecture-independent syntax that allows 
users to express a performance expectation for a component of their source code.  With 
this syntax, users can meld the performance properties in a statement that identifies their 
expectations for common language and library constructs (e.g., loops, BLAS, or MPI). 
Second, the language should be relatively simple to interpret, implement, and validate. 
Because the PA runtime must evaluate the expressions at runtime, it is important that the 
interpretation and implementation be efficient to minimize PA overhead on the 
application. (We are investigating dynamic code generation as a potential solution to this 
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issue.) Third, as the earlier examples demonstrate, we need expressive power to allow 
users to capture complex and important performance characteristics of their applications. 
We expect the need for complex expressions to grow as users gain more experience with 
assertions and as the number of performance metrics increases. 

Although our current prototype is realized as a library, our language specification is 
not dependent on our implementation; we plan to integrate performance assertions with a 
compiler so that PAs can easily benefit from the extensive semantic knowledge of the 
source code. Indeed, compilers might insert performance assertions automatically to aid 
in profile-directed compilation [3, 12]. 

Another benefit of a language specification of performance properties is the 
opportunity for optimization of the assertion expressions. We consider them portable and 
flexible because they allow the performance monitoring system to select the appropriate 
instrumentation and collection mechanisms. For example, two approaches to gathering 
hardware metrics are sampling and counting. With performance assertions, the runtime 
system can select the appropriate strategy based on the requirements of the expression. 
Furthermore, the language can be optimized for the underlying monitoring system on the 
target architecture, which is similar to Snodgrass’ work [15]. Although our language is 
not as general as a relational query language, it does offer many opportunities for similar 
optimizations. 

Our current implementation relies on source code annotations in the form of library 
calls to construct and evaluate performance assertions for specific code segments. As 
mentioned earlier, tight integration with a compiler might pay large dividends by 
allowing optimization and automatic insertion of these assertions. Currently, the 
annotations delimit a code segment and an expression as Figure 2 shows.  

2.2 Runtime System 
In conjunction with source code annotations, our initial implementation of 

performance assertions uses a runtime system to define assertions, delineate code regions, 
enable instrumentation, collect data, evaluate expressions, and react to assertion results. 

ipc_peak%g, &xnCyclesnInst

/ *

>

Hardware Counters Application Constant
 

Figure 4: Example expression tree. 

As the application encounters PA annotations for the first time at pa_start, the 
subroutine calls the PA runtime to take several steps to initialize the assertion. During 
initialization, the PA runtime allocates and initializes memory for data storage, parses the 
expression to determine which tokens represent performance metrics, creates a metric 
register file that indicates which metrics the assertion must measure during every 
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invocation, and configures any necessary instrumentation. The runtime system parses the 
expression to determine the necessary performance metrics to gather. Consider parsing 
expression (3). Figure 4 illustrates the resulting parse tree. The operators in steps  and 

 work as they do in C. The terminals in step  illustrate the diversity of data sources 
for PA expressions. At initialization, the PA runtime scans this parse tree to determine 
that it must capture two metrics from hardware counters, namely nInsts (number of 
instructions) and nCycles (number of cycles) at step . The runtime stores this 
information in the metric register file in the PA handle for this assertion. The runtime, 
then, examines the relational operator and the RHS of the assertion expression to 
determine that at step  the runtime must gather a value the size of a double (%g ) from 
the address pointed to by &x. The runtime reads this value every time the expression is 
evaluated, so it may change as the application parameters change. Finally, the runtime 
parses the constant (ipc_peak) at step  and recognizes that it is a constant already 
defined in its internal symbol table. The runtime stores all this information in the PA 
handle. At the end of initialization, the PA runtime enables instrumentation.  

When the application encounters the pa_end call, it reads the metric register file to 
determine which instrumentation to read and disable. It reevaluates the expression, but 
this time, it substitutes the actual data values for each terminal into the expression and 
generates a result. Reconsider our example in Figure 4. Prior to the expression evaluation, 
the PA runtime has read the current values for nCycles and nInsts from the hardware 
counters and has updated its internal metric register file. The values in this register file 
include an incremental count and an accumulated count. That is, the register file contains 
the number of cycles since pa_start and the accumulated number of cycles for this code 
region over all previous invocations of this assertion. For the expression evaluation, the 
PA runtime substitutes the incremental values for nCycles and nInsts into the 
calculation. For example, it might find 10,172,045 cycles and 14,136,751 instructions. 
The runtime, then, computes the result of the division:  1.39. The runtime proceeds to 
calculate the RHS. It follows the pointer &x and retrieves a double value from that 
address. Next, the runtime extracts the value for ipc_peak from the internal symbol table. 
Assume that the product of this multiplication is 1.25.  The runtime compares these two 
values—1.39 to 1.25—using the greater-than relational operator to discover that the 
expression is true. Therefore, the assertion is successful. On success, the runtime 
increments the invocation count and the success count for this assertion, and no action is 
taken. If, on the other hand, the expression evaluates to false, the invocation count is 
incremented, the failure count is incremented, and an action is triggered. The PA runtime 
provides a variety of responses to assertions that a user can select using the PA definition 
or an environment variable. The action can be ignored, recorded to a log, trigger more 
detailed monitoring, invoke a user-defined callback, or activate some corrective action, 
possibly using an adaptation system like Harmony [7] or Autopilot [13]. PA actions are, 
by default, counters that accumulate the number of failures for an assertion. To specify 
one of alternative actions mentioned above, users simply call the pa_set_action 
subroutine with the appropriate parameters after defining the assertion. 

Subsequent invocations of an assertion simply enable the necessary instrumentation, 
collect data from the instrumentation, evaluate the expression, and generate an answer. 
Furthermore, each assertion captures statistics for the values generated from the 
expressions. These statistics include minimum, maximum, and an accumulated total of all 
the LHS values.  

Naturally, these annotations are easily disabled both at runtime and at compile time. 
At runtime, a user can disable PAs by using an environment variable or by using specific 
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PA subroutine calls in their application. At compile time, a user can disable the 
annotations by using the CPP preprocessor to replace the PA statements with null 
statements. Disabling PAs at compile time produces an elided version of the application 
similar to the original. A promising alternative that we are beginning to investigate is to 
tightly couple the insertion of performance assertions with compilation, so that the 
combined system can generate assertions automatically using the additional knowledge 
that a compiler supplies. In this scenario, we hope to use compiler pragmas to define 
expressions and actions for application statements. 

2.3 Generating Bounds 
As part of the U.S. Department of Energy (DOE) Scientific Discovery through 

Advanced Computation project in performance evaluation (http://perc.nersc.gov), we are 
developing modeling methods that are useful in determining performance properties of a 
system and that exploit the additional information acquired from performance assertions. 
Clearly, one primary component of performance assertions is the ability to judge when an 
assertion has failed. Our initial work exploits other performance measures such as low-
level benchmarks and machine signatures.  For example, users could state in an 
expression that they expect a code segment to perform equivalent to the triad benchmark, 
which is part of the Stream memory suite [9]. Later, we plan to explore more automated 
techniques. In one instance, the system generates a performance history for each assertion 
and then compares the assertion with this statistical history across architectures. 

3 Compelling Uses of Performance Assertions 
Performance assertions have many compelling uses. First, assertions can highlight 

performance results that do not met user-modeled expectations. Second, PAs can 
highlight differences across platforms. Third, PAs can draw attention to regions of code 
that have changing performance expectations as the algorithms and source code evolve. 
Fourth, PAs can instantiate performance models on small regions of code, alerting users 
that their modeling assumptions are invalid. Fifth, PAs can trigger a callback into the 
application or adaptively select among a variety of implementations based on the PA 
expression.  

3.1 Experiment Platforms 
We ran our tests on two IBM SP systems located at Lawrence Livermore National 

Laboratory. The first machine is composed of sixteen 222 MHz IBM Power3 8-way SMP 
nodes, totaling 128 CPUs. Each processor has three integer units, two floating-point 
units, and two load/store units. Its 64 KB L1 cache is 128-way associative with 32 byte 
cache lines, and L1 uses a round-robin replacement scheme. The L2 cache is 8 MB in 
size, which is 4-way set associative with its own private cache bus. Each SMP node 
contains 4GB main memory for a total of 64 GB system memory.  

The second machine is composed of 332 Mhz 604e 4-way SMP nodes, totaling 1344 
CPUs. Each compute node has a peak performance of 2.656 GigaOPS. The 604e 
processor has one floating-point unit and one load/store unit. Its 32KB L1 cache is 4-way 
associative with 32 byte cache lines, and L1 uses an LRU replacement scheme. The 
processor has a 500KB L2 cache.  
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3.2 Case I: Raising Performance Exceptions 
To illustrate the use of performance assertions, we demonstrate how a user can 

instantiate performance expectations for a given code segment. Then, when that 
expectation is violated on a different architecture, the user is immediately notified by 
PAs.  

for (j = 1; j <= lastrow-firstrow+1; j++) 
{ 
 int iresidue; 
 double sum1, sum2; 
 i = rowstr[j];  
 iresidue = (rowstr[j+1]-i) % 2; 
 sum1 = 0.0; 
 sum2 = 0.0; 
 if (iresidue == 1)  
   sum1 = sum1 + a[i]*p[colidx[i]]; 
 for (k = i+iresidue; k <= rowstr[j+1]-2;  
      k += 2) { 
   sum1 = sum1 + a[k]   * p[colidx[k]]; 
   sum2 = sum2 + a[k+1] * p[colidx[k+1]]; 
   } 
 w[j] = sum1 + sum2; 
} 

Figure 5: Unrolled by 2 version of sparse 
matrix vector multiply for NAS CG. 

Our focus is the NAS Benchmark CG, version 2.3. This benchmark uses a sparse 
matrix vector multiply (SMVM) as illustrated for the NU version in Figure 1 and the U2 
version in Figure 5. Its notorious memory access patterns generally require that on the 
platform's underlying memory architecture be taken into account when designing 
efficient implementations.  In fact, many versions of SMVM exist, each tuned for 
individual memory architectures. As developers tune this code segment, they have 
expectations for this code on each architecture. Currently without PAs, there is no way 
for a developer to insert his or her performance expectations into the source code. 
Moreover, the only indication that this code segment is not performing well is overall 
poor application performance. 

SMVM VERSION POWER2 (604E) POWER3 POWER4 
Not unrolled (NU) 78.43 15.24 6.11 
Unrolled by 2 (U2) 84.08 15.20 5.80 
Unrolled by 8 (U8) 82.53 15.03 6.00 

Table 1: Performance of NAS CG with SMVM versions on example architectures. 

In Table 1, our experiments show that the tuned performance of SMVM executes 
quite differently on three different processors.  Assumptions about performance of this 
code on the PowerPC are not transferable, even though they are in the same processor 
family. On the Power2, the original SMVM (NU) performs best, while on the Power3 the 
U8 version performs best, and on the Power4 the U2 version outperforms the others. 
More strikingly, the performance optimum is different for each processor, even though 
compiled codes (without processor specific instructions) will execute on all three 
processors. 

Performance assertions help to solve this problem because they allow us to insert our 
expectations directly into the code. First, we add performance assertions to our code with 
expectations for the IBM 604e processor and then we migrate the code to the IBM Power 
3 processor. These chips have different memory and functional unit structures. Using 
specific information about the memory systems, a user could construct a specific 
assertion expression, such as $nL1LoadMisses/$nFlops, or they could rely on common 
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performance measures, such as instructions per cycle, or even wall clock time scaled by 
the number of nonzero terms in the operation, to bind their performance property to the 
target processor. This flexibility allows users to construct the most appropriate expression 
for their performance property without regard to the mechanics of instrumentation or data 
collection. Then, when these assumptions are violated, the assertion raises a performance 
exception. In this example, we found the expression $nL1LoadMisses/$nFlops, a reliable 
predictor of performance of SMVM versions across our example platforms. 

3.3 Case II: Validating Performance Models 
High performance software usually contains models of performance. In fact, many 

libraries record metrics about their performance. For example, the PETSC library [2] 
allows developers to record the number of floating point operations performed during a 
computational phase. As shown in Figure 6, PAs can easily validate the model by using 
underlying instrumentation to check the calculation, even integrating application specific 
data into the expression.  

 1:   pa_start(&pa, "$nFlops", PA_AEQ, "11 * %g * %g", &ym, &xm); 
 2:   for (j=ys; j<ys+ym; j++) { 
 3:     for (i=xs; i<xs+xm; i++) { 
 4:       if (i == 0 || j == 0 || i == Mx-1 || j == My-1) { 
 5:         f[j][i] = x[j][i]; 
 6:       } else { 
 7:         u       = x[j][i]; 
 8:         uxx     = (two*u - x[j][i-1] - x[j][i+1])*hydhx; 
 9:         uyy     = (two*u - x[j-1][i] - x[j+1][i])*hxdhy; 
10:         f[j][i] = uxx + uyy - sc*PetscExpScalar(u); 
11:       } 
12:     } 
13:   } 
14:   pa_end(pa); 
15:   PetscLogFlops(11*ym*xm); 

Figure 6: Performance model validation. 

As the library evolves over time, it is ported to new architectures and is optimized 
with new techniques. It is useful to validate these models against empirical data. In this 
example, the library logs the number of flops performed by the doubly nested for loop 
with the PetscLogFlops(11*ym*xm) subroutine. Performance assertions can help validate 
this claim. At line 1, the pa_start describes the expression and delineates the beginning 
of the code segment: pa_start(&pa, "$nFlops", PA_AEQ, "11 * %g * %g", &ym, &xm). 
This routine takes as arguments the expression, a relational operator, and threshold or 
bounds. The expression in this example is the number of floating point operations, 
$nFlops, performed in the code segment. Next, the expression is compared using the 
relation operator, PA_AEQ, which represents approximately equal, or, in this case, ±10% of 
the threshold value (11 * %g * %g). At line 14, pa_end signals the end of the code 
segment for the matching pa_start. pa_end collects all the relevant data, calculates the 
expression, and compares it to the threshold using the relational operator. If this 
expression fails, the default action notifies the user in a report at application termination. 
Once the validation is complete, a user can disable the assertions at runtime with an 
environment variable, or recompile the application to elide the PA statements with the 
preprocessor.  

3.4 Case III: Local Performance-Based Adaptation 
Performance assertions can also change the local application state in response to the 

outcome of its expression. For example, in our prototype, a PA can invoke a user-defined 
function that can change the state of the application, or select among several alternative 
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implementations based on testing the performance of the alternatives at runtime. For 
example, our experiences with a Monte Carlo simulation allow us to alter a variety of the 
application-defined variables in response to performance conditions [5]. 

pa_t pa_smvm; 
int smvm_choice = 1; 
pa_start(&pa_smvm,"$nCycles/$nInsts",PAR_MINIMIZE, &smvm_choice, 3 ); 
switch(smvm_choice) 
{ 
  case 1: 
    /* SMVM not unrolled */ 
    break; 
 
  case 2: 
    /* SMVM unrolled by 2 */ 
    break; 
 
  case 3: 
    /* SMVM unrolled by 8 */ 
    break; 
} 
pa_end(pa_smvm); 

Figure 7: Performance-based adaptation example using performance 
assertions. 

Reconsider our example in Case I of multiple versions of SMVM. In this example, 
the user selects one version of the implementation at compile time. Then, if the 
performance expectation in not satisfied, PAs can notify the user, who in turn changes the 
implementation, recompiles the application, and executes the code again. Indeed, in this 
example, we can easily use PAs to evaluate several different versions of the 
implementation and then, based on the outcome of the samples, select one 
implementation for the remainder of the application runtime. To implement this strategy, 
we modify the code in three ways as Figure 7 shows. First, we separate three versions of 
the implementation with a conditional statement, using a global variable to select among 
these versions. Then, we register this variable with the PA runtime system. Finally, we 
create a PA expression that measures the quantity we are interested in minimizing along 
with a range of possible choices.  

 

 

 
Version CPI 
NU 2.38 
U2 2.39 
U8 2.32 

Table 2: Measured CPI on SMVM 
implementations. 
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 Figure 8: CG performance using various SMVM 
implementations including PA adaptation. 

As the program executes, the PA runtime samples the performance of each 
implementation using the PA expression as provided by the user. Then, after some 
number of samples (e.g., in this case, 3 * 20 = 60), it selects one implementation choice 
by selecting the implementation with the minimal average value of the expression across 
all samples. Then, this PA disables itself and remains dormant for the remainder of the 
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application execution. Other PAs in this application operate independently. There are a 
practically innumerable number of ways to adapt the application state in response to PAs.  

As Figure 8 shows, our PA adaptation selects the appropriate version of the SMVM 
on the NAS CG (Class B) benchmark. For this adaptation, we minimized the adaptation 
expression cycles per instruction.  Table 2 supplies the measured CPI for this experiment. 

4 Observations 
As Section 3 illustrates, performance assertions allow users to insert performance 

expectations directly into their application code. During our development and testing of 
the PA system, we made several important observations. 

First, we believe that performance assertions are important because they permit users 
to assert explicitly their performance expectations in their applications. These assertions 
are then empirically verified at runtime. This is an entirely new way to think about 
performance analysis. Instead of collecting volumes of performance data and then 
reasoning about that data on an absolute scale, performance assertions allow users to 
plant expressions around their important application constructs, and they can elect to be 
notified only when the assertion is violated at runtime. Although most of our examples 
focus on the SMVM operation, our intent is to demonstrate that performance assertions 
are general and can be applied in a variety of situations. 

Second, performance assertions depend on the availability, efficiency, and accuracy 
of the underlying instrumentation. The syntax of performance assertions does not allow a 
user to specify how performance data is collected; this decision remains with the PA 
runtime. The benefits of this approach are that the runtime can select the most appropriate 
method for the instrumentation task at hand and that the performance assertion 
framework is portable across platforms. Unfortunately, instrumentation support is not 
easily portable. Tools like PAPI [4] have made great strides in addressing this problem, 
but microprocessors and operating systems offer a wide range of support for hardware 
counter instrumentation. Also, the perturbation introduced by performance assertions 
depends on efficient instrumentation. Our PA runtime does insert a small overhead for 
parsing the expression, but our measurements show that this overhead scales with the 
expression complexity, and it typically is a few thousand cycles. 

Third, our PA language is expressive to permit users to describe any number of 
expressions important to them. However, we need to provide additional support to users 
for understanding how to create these expressions. Although many performance metrics 
and expressions can identify performance problems, this process of developing and 
testing these expressions manually can be time consuming and sometimes misleading. 
Our initial work focuses on using multivariate statistical techniques to correlate 
individual metrics with overall performance. 

5 Related Work 
Many research efforts have modeled the performance properties of applications [6, 

11]. In fact, the name of performance assertions is not in and of itself novel. However, 
our technique and prototype, which are novel, allow users to assert explicitly in their code 
their performance properties, which can be verified empirically at runtime. In contrast to 
earlier work by Perl [11], this research focuses on runtime techniques to judge if an 
assertion has met its expectation. Perl's work checked for these properties in event logs, 
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not in the application at runtime. The GrADS project (http://nhse2.cs.rice.edu/grads/) is 
addressing issues of application performance and performance contracts [17] on 
computational grids. In a different effort, work by the APART consortium has culminated 
in a performance property specification language: ASL. ASL allows developers to write 
complex properties describing patterns in performance data, but current implementations 
do not allow users to plant their expectations directly in their source code, where they can 
be measured and verified at runtime. Also, we plan to provide users with a more general 
framework for reacting to failed assertions [16]. For example, our current work allows 
assertions to perform local adaptations in response to assertions [5]. 

6 Conclusions 
Traditional techniques for performance analysis provide a means for extracting and 

analyzing raw performance information from applications. Users then reason about and 
compare this raw performance data to their performance expectations for important 
application constructs. This comparison can be tedious, difficult, and error-prone for the 
scale and complexity of today's architectures and software systems. To address this 
situation, we present a methodology and prototype that allows users to assert 
performance expectations explicitly in their source code using performance assertions. As 
the application executes, each performance assertion in the application collects data 
implicitly to verify the assertion. By allowing the user to specify a performance 
expectation with individual code segments, the runtime system can jettison raw data for 
measurements that pass their expectation, while reacting to failures with a variety of 
responses. We present several compelling uses of performance assertions with our 
operational prototype including raising a performance exception, validating a 
performance model, and adapting an algorithm to an architecture empirically at runtime. 
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